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Abstract. Accurately predicting the geographic ranges of species is cru-
cial for assisting conservation efforts. Traditionally, range maps were
manually created by experts. However, species distribution models (SDMs)
and, more recently, deep learning-based variants offer a potential au-
tomated alternative. Deep learning-based SDMs generate a continuous
probability representing the predicted presence of a species at a given
location, which must be binarized by setting per-species thresholds to
obtain binary range maps. However, selecting appropriate per-species
thresholds to binarize these predictions is non-trivial as different species
can require distinct thresholds. In this work, we evaluate different ap-
proaches for automatically identifying the best thresholds for binarizing
range maps using presence-only data. This includes approaches that re-
quire the generation of additional pseudo-absence data, along with ones
that only require presence data. We also propose an extension of an exist-
ing presence-only technique that is more robust to outliers. We perform
a detailed evaluation of different thresholding techniques on the tasks of
binary range estimation and large-scale fine-grained visual classification,
and we demonstrate improved performance over existing pseudo-absence
free approaches using our method.
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1 Introduction

Accurate range maps, depicting where species are present and absent, are indis-
pensable tools for conservation. Statistics derived from their ranges are some of
the key information used to estimate the threatened status of different species [39].
However, traditional expert-derived range maps are costly and time consuming
to create. To alleviate this, advancements in statistics and machine learning
have enabled the development of species distribution models (SDMs) that can
estimate the probability of a species being present, among other quantities, at
different locations [2]. Recently, deep learning-based multi-species SDMs, trained
on crowd-sourced observation data, have been demonstrated to be capable of pre-
dicting the presence of thousands of different species simultaneously for an input
location of interest [4, 11, 12, 24, 30, 41]. However, to obtain a binary range map
from these continuous probabilities, they need to be binarized using a threshold.
Binary range maps are used in visualization in addition to being necessary for
computing spatial metrics for determining the threatened status of a species.
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Range Maps & Thresholded Predictions
Wood Thrush (left), Tui Parakeet (right)
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Fig. 1: Binary range maps for two different species. These ranges are generated
by the SINR [11] species distribution model (SDM) for Wood Thrush (left) and Tui
Parakeet (right), where the expert range map is denoted via solid outline. Converting
the continuous SDM outputs to binary range maps requires setting thresholds (e.g .
0.02, 0.1, or 0.5) which result in very different range maps depending on the values
chosen. More importantly, here the same threshold value is not the best for both species.

Finding the most effective threshold is a challenging problem, as the one that
leads to the most accurate range maps will not necessarily be the same across
different species (see Fig. 1). This is because the outputs of multi-species deep
SDMs can be highly miscalibrated, which is likely the result of a number of fac-
tors such as imbalances in the species present in the training data, spatial biases,
and issues stemming from species co-occurrences. The threshold selection task
has been previously explored in the ecology literature under the setting where
calibration data, which denotes a subset of locations where the species of interest
is present or absent, is available [27]. However, the more challenging setting, and
the one explored in this work, is where we do not have any information related
to confirmed absences [29]. This presence-only data paradigm is most relevant
to the opportunistic data available from large citizen science platforms such as
iNaturalist [20], which contains over 200 million species observations to date.

A number of different thresholding approaches have been proposed for the
case when only species presence observations are available [29]. However, many of
these approaches require the generation of ‘pseudo-absences’, i.e. hallucinated
data that simulates locations where a species is said to not be found. As a
result, the precise design choices made when generating these pseudo-absences
can have a large impact on the accuracy of the resulting binary range maps. In
this work, we compare these approaches to alternative thresholding techniques
that do not require absence data of any form. Furthermore, we outline a simple
extension of these absence-free techniques that obtain superior performance.
Our resulting approach is conceptually simple and more efficient than the more
computationally expensive pseudo-absence-based alternatives.

We make the following contributions: (i) We perform a detailed evaluation
of multiple different thresholding techniques for generating binary species range

https://www.inaturalist.org/taxa/13270-Hylocichla-mustelina
https://www.inaturalist.org/taxa/19208-Brotogeris-sanctithomae
https://www.inaturalist.org/taxa/19208-Brotogeris-sanctithomae
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maps. Our experiments are conducted using recent multi-species SDMs over a
large set of expert-derived evaluation range data. (ii) We show that binary range
maps can also be used as priors to improve large-scale fine-grained image classi-
fication and that they are superior to existing continuous priors. (iii) Finally, we
introduce an extension of an existing thresholding approach that does not require
any pseudo-absence data yet still outperforms existing presence-only methods on
both range estimation and image classification tasks. Code to reproduce our ex-
periments is available here: https://github.com/filipgdorm/binary_range_maps

2 Related Work

Species Distribution Models (SDMs). There is a large body of work on
developing models to estimate the spatial and temporal distributions of species
from raw observation data [2, 13]. These models are typically trained using one
of two different types of data: presence-only (PO) or presence-absence data. PO
data consists of a set of observations (i.e. locations in space and time where a
species has been observed), without any confirmed absences. PO data is signif-
icantly easier to collect compared to presence-absence data, requiring only the
recording of locations where a species has been observed, without the need for
extensive, resource-intensive surveys to confirm absences. As a result, PO data
is abundant and widely available through online citizen science initiatives such
as iNaturalist [20].

However, a challenge in training SDMs with PO data is the need for nega-
tive signal (i.e. species’ absences) during training. Without having absences in
the training data, SDMs can naively learn to simply predict presence, for every
species, at every location. One common approach to overcome this issue is to
create pseudo-absences (PAs), i.e. artificially generated data points representing
species’ absences [1]. Various approaches for generating PAs have been proposed,
with popular techniques including selecting locations uniformly at random (i.e.
‘random background points’) or locations where other species have been ob-
served (i.e. ‘target background points’) [5, 37, 38]. The effectiveness of different
methods for generating PAs for training multi-species deep SDMs has recently
been explored in [43].

Recently, [11] introduced a deep learning-based approach for modeling species’
distributions, termed Spatial Implicit Neural Representations (SINRs). SINRs
are parameterized as fully connected neural networks and can be trained on
noisy crowd-sourced PO data. The authors demonstrated the ability to jointly
estimate the ranges of thousands of species within a single model using PO
training data. They introduced new benchmarks for evaluating the accuracy
of predicted range maps by comparing model outputs to expert-derived ranges.
They also quantified the improvement in fine-grained visual classification for dif-
ferent species when using SDMs as priors to modify image classifier predictions
based on the location where the image was captured [30]. However, one of the
limitations of [11]’s range estimation evaluation is that it uses a continuous, i.e.
area under the curve, metric. As a result, the task of binary range estimation
is not directly evaluated as the evaluation protocol is agnostic to the choice of

https://github.com/filipgdorm/binary_range_maps
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threshold used to produce a binary range map. We use the models and data
from [11] for our evaluation and demonstrate that the threshold required can
vary significantly across species and how to select the best one is not obvious.
Binarizing Range Maps. The output of SDMs such as [11] are a set of contin-
uous predictions representing species’ presences at the evaluated locations. Bina-
rizing these predictions to create binary range maps requires setting thresholds,
which can result in very different maps depending on the thresholds selected.
Furthermore, as seen in Fig. 1, the choice of best threshold can be species de-
pendent. Without true absence data for calibration [15,27], the problem of con-
verting continuous outputs to binary ranges, given only PO data, is challenging.

The problem of selecting appropriate thresholds for SDMs has been previ-
ously explored in the ecology literature [27–29]. However, these existing works
tend to focus on an older generation of single species machine learning methods
such as Maxent [36], Boosted Regression Trees [14], and Random Forests [6].
Additionally, these experiments are often limited to a small number of species,
sometimes using only simulated data [29], and constrained to smaller geographic
regions. Previous work has shown that fixed constant thresholds (e.g . 0.5) do
not work well when the training data is imbalanced [17, 22]. In the context
of PO data, the impact of different thresholding techniques has been evaluated
in [28,29]. Existing techniques can be broadly categorized based on the data they
require, e.g . no data, presences, or presences and PAs. When no data is available,
approaches such as choosing a fixed threshold or simply setting the threshold
to be the average of the predictions can be used. Alternatively, if presence data
is available, one approach is to choose the lowest/minimum presence threshold
based on the SDM predictions associated with the presence observations in the
training data [34, 36]. In essence, this approach attempts to maximize recall by
minimizing the number of false negatives. Another approach is to generate con-
tinuous predictions for all test locations (i.e. not just training presences) and
choose the threshold that results in a fixed percentage of the lowest predictions
being set as absences [34]. However, the selected percentage is heavily influenced
by the ratio between presence and absence data. If one generates PAs, then it is
possible to select the threshold that directly maximizes the downstream evalu-
ation metric of interest (e.g . F1 score) [29] or to achieve a desired target value
(e.g . 95% sensitivity) [33]. However, these approaches are sensitive to mismatches
between the distribution of true absences and generated PAs.

We build on the above existing work by extending the evaluation of threshold-
ing techniques beyond simulation data, and instead use a recent dataset of glob-
ally distributed expert-derived range maps of 3,000 different species from [11].
Furthermore, our evaluation is based on recent multi-species neural-network-
based SDMs that are jointly trained on PO data from thousands of species.
SDMs as Geo Priors for Vision. In addition to directly generating range
maps, SDMs have also been shown to be helpful for assisting image classifica-
tion. Several works have demonstrated that combining the probabilistic outputs
of image classifiers with an estimate of the spatial distribution, i.e. as a ‘geo
prior’, of the categories of interest can improve classification accuracy. Additional
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image metadata, which encodes the geographic location where each image was
captured, can be used to estimate the spatial distributions of different classes.
Once trained, the geo prior downweights the classifier predictions for categories
that are unlikely to be present, according to the prior, at the location where
the test image was taken. Different approaches have been explored in the litera-
ture, ranging from methods that spatially bin observations [3], ones that jointly
train classifiers with additional location inputs [9,40], or methods that combine
classifier predictions with separate spatial distribution models [30]. In our later
experiments we show that binary range maps provide a small, but non-trivial,
improvement in classification accuracy compared to existing approaches.

3 Method

Our goal is to generate binary species range maps. We begin with an overview of
how SDMs can be trained to generate continuous range maps, and then introduce
different approaches for converting these continuous predictions to binary ones.

3.1 Predicting Species’ Presence

Recently [11] introduced a neural network-based approach, SINR, for predicting
continuous range maps. Their model is trained simultaneously on thousands of
different species from crowd-sourced presence-only data. At test time, the input
to the model is a longitude-latitude tuple denoting a location of interest, and the
output is a multi-label classification indicating the probability that each of sev-
eral thousand different species is present there. Below we provide an explanation
of how their model is parameterized and subsequently trained.

SINR denotes an input location by its longitude and latitude as xi = [lon, lat].
As in [30], these inputs are wrapped using a sinusoidal encoding to limit the im-
pact of boundary effects. Other more complex input transformations are possible,
but this type of wrapped input is still competitive on related spatial representa-
tion learning tasks [42]. While it is possible to use other input features such as
ones representing local environmental conditions, such as temperature and rain-
fall, in this work we mainly focus on location only models. The true absence (0)
or presence (1) of S different species at xi is denoted by the multi-label vector
yi ∈ {0, 1}S . In practice, in the presence-only setting we do not have any training
data that indicates if a species is absent. Instead, similar to [10], the observed
training data is represented as zi ∈ {1, ∅}S , where zij = 1 if a species is present
and zij = ∅ if the presence or absence of the species is unknown. SINR models
estimate yi at any location xi within a spatial domain X , given observational
training data {(xi, zi)}Ni=1.

The range estimation model we wish to learn is denoted as ŷi = hϕ(fθ(xi)),
where fθ : X → Rk is a location encoder parameterized by θ, and hϕ : Rk →
[0, 1]S is a multi-label classifier parameterized by ϕ. The location encoder fθ
is a fully connected neural network with residual connections and the species
classifiers in hϕ are simple per-species linear projections followed by sigmoid non-
linearities. The prediction ŷi ∈ [0, 1]S represents a prediction of the probability
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of each species being present at location xi. The parameters of both components
of the model can be estimated using stochastic gradient descent:

θ∗, ϕ∗ = argmin
θ,ϕ

1

N

N∑
i=1

L(ŷi, zi), (1)

where L is a suitable loss function and ŷi = hϕ(fθ(xi)) is the model’s prediction.
The output of this model is thus a probability distribution indicating species’
presence, or absence, over a location of interest.
Training Loss. [11] evaluate different loss functions L for training SINR models.
At their core, these losses amount to different ways of addressing the lack of
true absence data. To address this, different mechanisms for generating pseudo-
absences (PAs) are explored. For example, taking inspiration from the task of
single positive multi-label learning [10], the heuristic that all unobserved labels
are negative is used. This assumption also holds for species range estimation
because, given an arbitrary location, most species will not actually be present
there. Here we focus on their best performing approach, ‘Full Assume Negative’
(LAN-full), which is inspired by losses introduced in [30]. We describe the other
losses in Appendix C.

For the LAN-full loss function, PAs are selected in two different ways. First,
each species presence is paired with a PA at a location r that is sampled uni-
formly from the surface of the earth, i.e. r ∼ Uniform(X ). Second, each species
observation is also paired with a PA at the same location for a different species,
which generates PAs that align with the distribution of the data. The final loss
is thus represented as:

LAN-full(ŷi, zi) = − 1

S

S∑
j=1

[
1[zij=1]λ log(ŷij) + 1[zij ̸=1] log(1− ŷij) + log(1− ŷ′j)

]
,

(2)
where ŷij is the predicted probability of species j being present, zij indicates the
presence or absence of species j, λ > 0 is a hyperparameter used to prevent PAs
from dominating the loss, and ŷ′ = hϕ(fθ(r)) are the predicted probabilities of
the species of interest being present at a randomly chosen location r. This loss is
efficient in that it provides a training signal for all entries in ŷ for each training
example, where a positive signal is provided for the observed present species and
a negative signal from PAs is provided for all other species.

3.2 Generating Binary Range Maps via Thresholding

Thresholding techniques aim to estimate species-specific thresholds that lead to
the most accurate binary range maps. Thresholds are applied after the SDM has
been trained and after the predictions for each location have been generated.
Once a threshold is identified, all predictions above or equal to it are marked
as presences, and all below as absences. Next we outline different threshold
generation techniques.
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Single Fixed Threshold. This uses a single constant threshold (e.g . 0.5) across
all species [26,31,32]. If the model is well calibrated, this should be sufficient.
Single Best Threshold. This method also uses a single threshold, but unlike
the previous approach here we use the presence and absence data from the
expert ranges in the evaluation data to select the threshold that leads to the
highest mean F1 score. This threshold is selected by generating 20 linearly spaced
candidate thresholds in the range 0-1 and choosing the best one.
Random Sampling. When true absences are not available, one common choice
is to generate pseudo-absences (PAs) [11, 43]. This method takes presence ob-
servations from the training data and generates randomly distributed PAs for
each species where it has not been observed and selects per-species thresholds
that maximize the mean F1 score on this data. This is achieved by binning the
observations into H3 [19] cells of resolution four. The cells chosen as presences
are those where the species has been observed, the absences are randomly sam-
pled from the rest of the cells. In our later evaluation, we explore the impact of
varying the ratio between the true presence and generated PA data.
Target Sampling. To match the distribution of the training data, this ap-
proach generates PAs in locations where other species have been observed, but
the species of interest is absent [11,43]. We use H3 [19] cells of resolution four to
bin the presence data, where cells with at least one observation of a species are
counted as presences. All cells where there are at least Nt observations across all
species, but the species of interest is not present, are counted as PAs. The value
of Nt is calculated by first identifying all the cells where the species of interest
has been observed at least once. These cells are ranked based on the ratio of the
total number of observations in each cell to the number of observations specifi-
cally for the species of interest within that cell. Nt represents the 95th percentile
value of this ratio, indicating the minimum number of total observations in a
cell needed to be reasonably confident that the species of interest is not present
in that cell. Given the resulting presence and PA data, we can select per-species
thresholds that maximize the F1 score.
Threshold Classifier. For this method we introduce a novel supervised ma-
chine learning approach to predict the best threshold per-species. For the in-
put features for each species we use the final learned species embedding vector
from [11], where the assumption is that species with similar embeddings will
require similar thresholds. For the output of the learning algorithm, we bin the
thresholds into 20 possible values, evenly distributed between 0-1, and treat it
as a classification problem. 75% of the 2,418 IUCN species are used to train the
classifier and the remaining 25% are used for evaluation. As a result, the final
scores for this approach are not directly comparable to the other techniques. We
explore two different variants of this approach: a Random Forest (RF) classifier
which uses the default values from scikit-learn [35] or a Multilayer Perceptron
(MLP) with two hidden layers, containing 100 neurons each.
Mean Predicted Threshold. Following the approach outlined in [29], we select
the threshold based on the average of the SDM predictions. Specifically, for each
species, we generate predictions across all locations. Subsequently, we determine
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the threshold by calculating the mean predicted value from a randomly selected
subset of these locations.
Lowest Presence Threshold (LPT). This approach extracts the continuous
predictions for a species of interest associated with each presence observation
from the training data and selects the threshold as the lowest value from this
set [34]. This then ensures that the resulting binary range is guaranteed to en-
compass each of the presence observations.
Lowest Presence Threshold - Robust (LPT-R). This method builds on
the previous LPT approach [34], but we extend it to make it more robust to
outliers. The motivation is that LPT is highly susceptible to outliers as inaccu-
rate observations or ‘vagrants’ (individuals lost outside their ranges [25]) can
massively bias the threshold selection. So instead of choosing a threshold that
includes all training presences, we instead select one that encompasses the vast
majority of them. Specifically, we perform the same steps as LPT but set the
threshold by sorting all the predicted continuous scores and choosing it to be
equal to the 5th percentile. Fig. A5 in the appendix illustrates a visual example
of this method.

4 Implementation Details

4.1 Datasets

Presence-Only Training Data. Our training data is publicly available crowd-
sourced occurrence data from iNaturalist [20]. The original raw data contains an-
notated images of species with geographic locations and timestamps. We use the
same subset of 35.5 million total observations containing 47,375 species from [11].
Here, observations are of ‘research grade’ status, meaning that there is a higher
confidence that the classifications are correct. While iNaturalist offers numerous
advantages, it also has limitations. For instance, the data contained within is
biased towards the Global North.
Presence-Absence Evaluation Data. For evaluation, we require data that
contains both confirmed presence and absence observations distributed across
the globe. The S&T and IUCN datasets from [11] satisfy these requirements.
The eBird Status and Trends (S&T) dataset covers 535 bird species biased to
North America [16]. This dataset contains estimated relative abundance maps
which have been converted into binary range maps. The second dataset con-
sists of ranges of 2,418 species from the International Union for Conservation of
Nature (IUCN) [21]. In contrast to the S&T dataset, this dataset is more tax-
onomically diverse and more globally distributed. The two evaluation datasets
are represented as H3 [19] cells at resolution five, which corresponds to 2,016,842
evaluation locations distributed across the entire globe.
Image Classification Evaluation Data. In addition to range estimation, we
also evaluate different models as geographic priors on the task of assisting image
classification predictions as in [3,11,30]. We again use the same dataset from [11],
which contains 282,974 images from iNaturalist, which represents a subset of
39,444 species from our training set. The evaluation metric for this task is the
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top-1 image classification accuracy resulting from combining, in our case binary,
range predictions with the probabilistic classification outputs of an Xception
classifier [8] trained on images from iNaturalist.

4.2 Evaluation Metrics

Continuous range predictions can be evaluated using area under the curve-based
metrics such as average precision. These scores can then be averaged across dif-
ferent species to come up with a single final score as in [11]. However, our goal
is to evaluate binary range maps, not continuous predictions. Thus after thresh-
olding a continuous probability of presence output from a model, we consider all
locations above the threshold as representing predicted presences and all below
as predicted absences. Evaluation is performed using the F1 score, which com-
bines precision and recall into a single value and is particularly useful in binary
classification problems where there is an imbalance between the classes, which
is the case here as the presences are typically outnumbered by absences. The F1
score is computed per-species after binarization:

F1 = 2 · precision · recall
precision + recall

=
TP

TP + 1
2 (FP + FN)

, (3)

where TP denotes True Positives, FP False Positives, and FN False Negatives.
The final reported mean F1 score is the average per-species F1 score across
the species in each of the respective evaluation sets. Unless stated otherwise,
the held-out evaluation datasets are completely detached from any threshold
identification methods to ensure that there is no data leakage in the process.

5 Experiments
In this section we evaluate different techniques for generating binary range maps.
Unless specified otherwise, experiments are carried out with the LAN-full SDM
from [11] capped at 1000 training samples per-species without environmental
input features. The model’s predictions are binarized using different thresholding
techniques and then evaluated by computing the mean F1 score against the held-
out test set. This score is presented together with information about how far the
performance is from the upper bound. We also provide additional quantitative
results, including different input features, and analysis in Appendix A.

5.1 Binarizing Range Maps

Evaluating Different Thresholding Techniques. Tab. 1 presents the mean
F1 score for a wide set of binarization techniques when evaluated on the IUCN
dataset from [11]. The robust Lowest Presence Threshold (LPT-R) method is
the highest-performing technique, closely followed by the Target Sampling ap-
proach. Both the LPT and LPT-R methods have the advantage that they do not
require any pseudo-absences to be defined. Neither Threshold Classifier tech-
niques work particularly well here when predicting thresholds, indicating that
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Table 1: Binary range estimation performance of different thresholding
techniques. Here we report the average mean F1 score for five different random ini-
tializations of the LAN-full SDM on the IUCN evaluation set, where the upper bound is
67.2%. (†) denotes threshold classifier scores which are computed on a 25% subset of
the full evaluation set, as they are trained on the rest. (✓) indicates whether a thresh-
olding technique uses true absences (TA), pseudo-absences (PA), or one single overall
threshold (ST). Bold entries indicate best methods, and underline are second best.

Thresholding Method ST PA TA ↑ Mean F1 ↓ Upper Bound ∆

Threshold Classifier - RF † ✓ 55.4 −11.8

Threshold Classifier - MLP † ✓ 56.3 −10.9

Single Fixed Threshold - 0.5 ✓ 40.2 −27.0
Single Best Threshold - 0.1 ✓ ✓ 55.2 −12.0
Random Sampling - #Absences=#Presences ✓ 57.6 −9.6
Random Sampling - #Absences=5#Presences ✓ 58.1 −9.1
Random Sampling - #Absences=10#Presences ✓ 56.9 −10.3
Random Sampling - 100 Absences ✓ 57.3 −9.9
Random Sampling - 1000 Absences ✓ 57.6 −9.6
Random Sampling - 10000 Absences ✓ 43.9 −23.3
Target Sampling ✓ 59.7 −7.5
Mean Predicted Threshold 37.7 −29.5
Lowest Presence Threshold (LPT) 54.3 −12.9
Lowest Presence Threshold - Robust (LPT-R) 60.8 −6.4

the relationship between SDM species’ weights and final thresholds is not very
effective for this type of model. Still, these methods, along with the vast major-
ity of techniques, work better than using one Single Fixed Threshold of 0.5
for binarization. The main exception to this is the Mean Predicted Threshold
technique which performs worse than this baseline. Unlike [29], which highlights
this approach as viable in the PO setting, our evaluation on a larger set of glob-
ally distributed species indicates that it is not very effective. Generally the SDM
outputs are very small because most species are absent from most places. Thus,
selecting the threshold by averaging predictions results in a small threshold.

Qualitative examples of the resulting binary ranges for several species are de-
picted in Fig. 2. This figure displays a representative set of species and highlights
how the two best-performing methods compare to expert-derived range maps. In
many cases, such as the Wood Thrush and Tui Parakeet, the methods perform
similarly. The former case is an example of a North American bird, a species
that has abundant PO training data. The latter is a South American species
with much less training data, but where the two methods yield almost identical
threshold and range maps. The Tolai Hare and Eastern Green Snake are both ex-
amples where the LPT-R approach generates much more accurate ranges. Both of
these species are in regions with less training data and have large ranges, as seen
in expert ranges on the left. In these examples, the Target Sampling greatly
underestimates the ranges. This seems to often be the case for species with large
ranges and few training samples. However, for species like the Yosemite Toad
with few training samples and a small range, the Target Sampling approach’s
more conservative range estimation appears to work better.
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Table 2: Binary range estimation across different input SDMs. Here we report
the mean F1 score for three different input SDMs, where each is trained with a different
loss function. The reported scores are the result of five repeated runs, with different
initializations, for each SDM. We also report results for an ensemble of the five different
LAN-full SDMs, where we average the model predictions before thresholding.

S&T IUCN

Model Method ↑ Mean F1 ↓ Upper Bound ∆ ↑ Mean F1 ↓ Upper Bound ∆

LAN-full

Random Sampling 67.4 −8.7 57.6 −9.6
Target Sampling 70.5 −5.6 59.7 −7.5
LPT 60.0 −16.1 54.3 −12.9
LPT-R 69.1 −7.0 60.8 −6.4

LAN-SSDL

Random Sampling 57.8 −11.9 50.5 −9.6
Target Sampling 64.1 −5.6 53.1 −7.0
LPT 58.2 −11.5 49.9 −10.2
LPT-R 61.3 −8.4 53.5 −6.6

LAN-SLDS

Random Sampling 71.1 −5.1 38.9 −8.5
Target Sampling 71.0 −5.2 37.4 −10.0
LPT 59.5 −16.7 30.0 −17.4
LPT-R 71.1 −5.1 39.4 −8.0

Ensemble
LAN-full

Random Sampling 67.5 −9.4 58.3 −10.0
Target Sampling 71.0 −5.9 60.5 −7.8
LPT 62.8 −14.1 56.2 −12.1
LPT-R 70.0 −6.9 61.7 −6.6

Evaluating Different SDMs. Next, in Tab. 2 we evaluate the best-performing
techniques more using different input SDMs and additional datasets to quantify
their robustness. Here, the different SDMs correspond to training SINR models
with one of three different loss functions. We include results on the smaller S&T
dataset from [11], which is biased toward birds from North America with larger
ranges. As can be seen in the results, for the more challenging IUCN dataset, the
LPT-R approach outperforms the other methods for all three input SDMs. The
Target Sampling approach is the second best-performing method for LAN-full
and LAN-SSDL, while being the second worst method for LAN-SLDS. The perfor-
mance gap is at most a few percentage points, but considering that the LPT-R
approach foregoes several computation steps associated with PA generation used
by the other methods, this highlights its utility. As LPT-R performs well on the
IUCN dataset, it perhaps implies that it may work better for a wider set of
species, even those that are less prevalent on iNaturalist. This is important,
given that these types of species are often the ones that require monitoring.

For the S&T evaluation dataset, the Target Sampling approach generally
performs best. However, for the LAN-SLDS SDM, the performance of the different
top techniques is almost identical. As noted earlier, the S&T dataset has a North
American bias, which is also where most of the iNaturalist training data is from.
Similar to the findings in [11], the LAN-SLDS SDM performs well on the S&T
dataset, which is likely due to the fact that this loss function uses a version of
target background sampling when generating its pseudo-absences which will also
result in a bias towards North America in the context of this dataset.
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Ensembling SDMs. Finally, in the bottom rows of Tab. 2 we study the impact
of ensembling five different random initializations of the LAN-full SDM. This
ensemble was used for both threshold identification and, subsequently, evaluation
on both S&T and IUCN datasets. The ensemble results in more accurate range
maps compared to a single model, as illustrated by the higher mean F1 score for
both datasets. We also observe a reduction in the difference between LPT-R and
Target Sampling on S&T as a result of ensembling.

5.2 Geo Priors for Image Classification
SDMs can also be used as ‘geo priors’ to assist image classifiers by combining
their outputs with a classifier’s probabilistic predictions. Here, we conduct an
evaluation similar to the one carried out in [11], with the main difference be-
ing that with binary range maps, locations outside a species range would be
downweighted to zero, i.e. the SDM would prevent the classifier from predicting
that species. We use the image classification dataset from [11], which consists
of 282,974 images of different species collected from iNaturalist, covering 39,444
species from the PO training set. Each image is accompanied by the latitude
and longitude at which it was taken. In Tab. 3, the results of using different bi-
nary range maps are presented. Using a geo prior to weight predictions increases
the Top-1 accuracy in all experiments compared to the vision-only prediction
model (75.4%), except when binarizing with a constant threshold of 0.5 for all
species. As previously established, different species require different thresholds,
and a threshold of 0.5 is generally too high. This results in most species being
incorrectly marked as absent from nearly all locations, which degrades model
performance. However, setting a lower threshold of 0.1 for binarizing all species
significantly improves accuracy, and outperforms the vision-only model. This
shows that the vision model benefits from a geo prior, even if the range maps
are not very accurate when making predictions.

Switching to more refined methods of setting species-specific thresholds im-
proves the performance even further. Out of all methods, the Target Sampling
and LPT-R approaches work best. However, Tab. 3 shows that this performance
is lower than when using the raw prediction scores without binarizing them, i.e.
the original continuous outputs of the SDM (81.6%). We hypothesize that the
continuous scores allow the model to express uncertainty about a species being
at a given location rather than choosing between the two extremes of classify-
ing as either present or absent. To address this, we add a small constant +δ to
the predicted absences after thresholding when using them as priors, e.g . 0.01.
In all cases, adding this constant improves the performance of all binarization
techniques as it prevents them from saying that a species is never present at a
location. As a result, the binarized range maps generated through both Target
Sampling and LPT-R outperform the continuous baseline.

5.3 Limitations
Despite the promise of our work, there are still some important limitations to
note. First, the training data contains biases, both spatial biases at the national
(e.g . Europe and North America are disproportionately represented) and local
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Thresholding Method Top-1 Acc.

+δ

No Prior (i.e. vision-only) 75.4 -
Continuous - No Threshold 81.6 81.4
Single Fixed Threshold - 0.5 52.7 75.7
Single Fixed Threshold - 0.1 77.6 81.2
Single Fixed Threshold - 0.01 80.9 81.3
Random Sampling 78.5 81.5
Target Sampling 80.1 81.7
LPT 80.4 80.8
LPT-R 80.0 81.8

Table 3: Image classification with geo
priors using different thresholding tech-
niques. Here we use a LAN-full SDM as a geo
prior to assist image classification. The results
are the average of five different random ini-
tializations of the SDM. ‘+ δ’ indicates that a
small constant is added after thresholding to
ensure that it is not possible for a threshold-
ing technique to predict that a species is never
present.

scale (e.g . it is biased towards locations that are easier for people to get to), in
addition to some species being much more prevalent than others. Spatial biases
in citizen science data have been well characterized in the literature [18] and
various approaches have been proposed to mitigate it [7, 23]. We leave the in-
vestigation of such methods for future work. Another data related issue is that
the expert-derived range maps in the test set can contain errors or simply be
outdated [11]. However, to the best of our knowledge the test set used represents
the best source of large-scale global evaluation data available. The main results
in this work use species distribution models that only use coordinate features
as input. Results can change if additional environmental covariates are used as
input, see Appendix A. We also do not perform any regularization on the bi-
nary maps to make them more spatially contiguous. This could be investigated in
future work, although we note that our predictions are typically already contigu-
ous. Finally, caution should be exercised when using the resulting binary range
maps in conservation or assessment applications as the results demonstrate that
performance is still likely insufficient for many species.

6 Conclusion
We explored the problem of automatically converting continuous species distri-
bution model outputs into binary range maps via thresholding. Through detailed
evaluation, we compared the performance of multiple different thresholding tech-
niques, using different underlying models, across a range of different species. We
also proposed an extension of an existing method, which we call LPT-R, and
demonstrate that leads to more accurate binary range maps in a number of
cases. Our approach circumvents the need to create pseudo-absences, making it
computationally cheaper while also yielding more accurate ranges. Additionally,
we showed that binary range maps can also be used as geographic priors to
improve fine-grained image classification accuracy. A possible future extension
to our work would be to leverage temporal data to generate time-conditioned
range maps, which could significantly enhance our understanding of distribution
changes over time.
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Fig. 2: Qualitative examples of estimated binary ranges. Each row depicts a
different species, and the columns show the expert-derived ranges and the outputs
from the Target Sampling and LPT-R approaches, respectively. Inset, we also display
the different types of errors. We use an ocean mask for visualization purposes.
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Appendix
A Additional Results
In this section, we present additional results and analysis. Unless stated other-
wise, to generate these results we used the outputs from a single LAN-full SDM
and binarized the output using the LPT-R approach.
How much does the performance vary for different taxonomic groups?
As seen in Fig. A1 for the IUCN dataset, LPT-R outperforms the other two
approaches for the four different coarse taxonomic classes: amphibians, birds,
mammals, and reptiles. This indicates that the results are stable across widely
different taxonomic groups.

Amphibia Aves Mammalia Reptilia
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Fig.A1: Results across different taxonomic groups. Performance of the LAN-full

model on the IUCN task presented as the mean F1 score per taxonomic group.

How does the number of training samples influence the quality of
binarized ranges? In Fig. A2 we display the relationship between the number
of training samples per species against the F1 score, i.e. the measure of quality of
the predicted binary range maps. Results are reported separately for the IUCN
and S&T datasets. The overall trend is that the F1 score increases together
with the number of training samples, i.e. species with more training presence
observations have better predicted ranges.
What is the distribution of F1 scores across species? In Fig. A3 we
display a histogram for the F1 scores for LPT-R on the IUCN dataset. We can
see that most species obtain an F1 score of between 0.6 and 0.7 and that the
distribution is skewed to the right. This indicates that thresholding results in
plausible binary range maps for most species.
How many species obtain a boost in image classification performance
as a result of using a binary range geo prior? In Fig. A4 we illustrate
how using different geo priors influences the classification accuracy for computer
vision models. We see that compared to the baseline of using continuous SDM
predictions as a prior, the binarized range map results in fewer species with
reduced performance as a result of using a prior (see left side of plot).
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Fig.A3: Per-species binned performance. Histogram of scores on the IUCN
dataset for LAN-full binarized using LPT-R. The x-axis represents binned F1 score, and
the y-axis is the number of species in each bin. In general, we observe that the distri-
bution is skewed to the right.

How well do the thresholding techniques perform with models trained
with additional environmental input features? In addition to the exper-
iments in the main paper where we only evaluate SDMs that use coordinate
features as input, here we evaluate SINR models that are trained using both
environmental features and coordinates. SINR showed that these combined fea-
tures yield the best continuous range estimation performance. Our results for
binarizing these outputs with different thresholding techniques can be found in
Tab. A1. The upper bound, i.e. the theoretically best possible range maps, for
the model with environmental features is substantially higher at 73% (vs. 67.2%
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Fig.A4: Per-species image classification performance improvement. Here we
sort species (i.e. categories) in the fine-grained image classification task according to
how much the classification accuracy improves after using an SDM as a geo prior. Thus
an accuracy difference of 0, indicates that the prior does not help for that particular
species. The sorted accuracies after applying the original continuous predictions as
a geo prior are shown in blue. Red shows the improvement resulting from using a
binarized range map from our LPT-R with a small δ added.

for the coordinate-only case). However, the resulting binarized range maps are
not much more accurate than those of the coordinate-only variant. For the envi-
ronmental model, the Target Sampling method outperforms the LPT-R method.
This is consistent with earlier experiments where Target Sampling was supe-
rior in the S&T task, a set of species with more training data for which we
expect the model to generate more accurate range maps. As the higher upper
bound shows, there is potential for more accurate range maps, and this increased
accuracy allows Target Sampling to outperform our LPT-R. The threshold clas-
sifier using an MLP also performs well, indicating a stronger correlation between
model weights and optimal thresholds for certain model types. However, since
the scores for this method are calculated using only a 25% subset of species from
the evaluation set, conclusions drawn from these results should be approached
with caution.

What impact does the choice of percentile have on LPT-R? In Tab. A2 we
evaluate how varying the percentiles for the LPT-R method impacts performance
across different models and loss functions. LAN-SLDS seems to perform best with
higher percentiles for LPT-R than the other two losses. This implies that there
is more ‘noise’ associated with the presences used for identifying the thresholds,
i.e. more of them need to be discarded when selecting an appropriate threshold.
These results show that LPT-R can and should be tuned to the specific model it is
applied to, ideally using a held-out validation set. Note, with the exception of the
results in Tab. A2, this value was set to 5% by default for all other experiments
and is not tuned.
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Table A1: Binary range estimation performance of different thresholding
techniques for models using additional environmental features. Similar to
Tab. 1, here we report the average mean F1 score for five different random initializa-
tions of the LAN-full SDM on the IUCN evaluation set. However, here the models are
trained with coordinate and environmental input features, where the upper bound is
73.0%. (†) denotes threshold classifier scores which are computed on a 25% subset of
the full evaluation set, as they are trained on the rest, and thus cannot be directly
compared. (✓) indicates whether a thresholding technique uses true absences (TA),
pseudo-absences (PA), or one single overall threshold (ST). Bold entries indicate best
methods, and underline are second best.

Thresholding Method ST PA TA ↑ Mean F1 ↓ Upper Bound ∆

Threshold Classifier - RF † ✓ 60.5 −12.5

Threshold Classifier - MLP † ✓ 63.7 −9.3

Single Fixed Threshold - 0.5 ✓ 44.0 −29.0
Single Best Threshold - 0.1 ✓ ✓ 62.3 −10.7
Random Sampling - #Absences=#Presences ✓ 54.4 −18.6
Random Sampling - #Absences=5#Presences ✓ 58.5 −14.5
Random Sampling - #Absences=10#Presences ✓ 57.8 −15.2
Random Sampling - 100 Absences ✓ 55.5 −17.5
Random Sampling - 1000 Absences ✓ 59.8 −13.2
Random Sampling - 10000 Absences ✓ 45.1 −27.9
Target Sampling ✓ 62.8 −10.2
Mean Predicted Threshold 42.5 −30.5
Lowest Presence Threshold (LPT) 41.6 −31.4
Lowest Presence Threshold - Robust (LPT-R) 60.2 −12.8

B Additional Methods and Baselines

Here, we present some additional baselines to help contextualize the performance
of the evaluated thresholding techniques. These baselines all use the held-out test
set directly to find optimal thresholds. As a result, this is clearly not a viable
approach but serves as a benchmark for the rest of the experiments.

Performance Upper Bound. First, we describe how we compute an upper
bound on the possible mean F1 scores for the IUCN dataset. These values were
used to represent the ‘Upper Bound ∆’ in Tab. 2, where we used the test data
to select the optimal threshold for each species. These thresholds were obtained
by generating predictions for each species for the test locations. Then for each
species, the threshold is set to each unique value in the predictions until the
one that maximized the F1 score was found. This means that each species had
its own unique F1 score set. The upper bounds obtained are 67.2%, 60.1%, and
47.4% for LAN-full, LAN-SSDL, and LAN-SLDS, respectively. These results are the
average of five runs with different random initializations of the input SDM. The
upper bound for the ensemble of five LAN-full SDMs is 68.3%. The maximum
performance for each of these losses is represented by these scores, meaning that
a good thresholding technique would find thresholds that match these as close
as possible, and obviously can not be better. Similarly, the upper bounds were
calculated for the S&T dataset. These scores were 76.1%, 69.7%, and 76.2% for
LAN-full, LAN-SSDL, and LAN-SLDS, respectively, and 76.9% for the ensamble.
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Table A2: Impact of varying the percentile hyperparameter for LPT-R. Here,
we report the mean F1 score for different variants of LPT-R, i.e. where we use different
percentiles when setting the threshold. The scores are computed for the IUCN set as the
average of five random initializations of SDMs, both in the setting where the models are
only trained on coordinate inputs (‘Crds.’) and when trained with coordinates together
with environmental inputs (‘Env. + Crds.’). The scores are presented for different
training losses. We can see that the models that also use environmental inputs perform
best with a slightly larger percentile over our default of 5%.

Model Thresholding Method ↑ Mean F1 Crds. ↑ Mean F1 Env. + Crds.

LAN-full LPT 54.3 41.6
LPT@2.5 60.6 57.0
LPT@5.0 60.8 60.2
LPT@7.5 60.0 60.9
LPT@10 58.9 60.4
LPT@12.5 57.6 59.3
LPT@15 56.2 57.8

LAN-SSDL LPT 49.9 35.2
LPT@2.5 53.7 50.5
LPT@5.0 53.5 53.4
LPT@7.5 52.5 53.4
LPT@10 51.3 52.5
LPT@12.5 50.0 51.1
LPT@15 48.7 49.5

LAN-SLDS LPT 29.9 28.9
LPT@2.5 36.9 41.6
LPT@5.0 39.4 47.2
LPT@7.5 40.7 50.7
LPT@10 41.5 52.8
LPT@12.5 42.0 54.2
LPT@15 42.2 55.1

Subsampling Expert Data. We also explore the impact of using a fraction
of the high-quality true data to compute the thresholds. One way of setting
the thresholds for species is by using a small amount of true presence-absence
data. For these experiments on the IUCN dataset, a subsample of the expert
evaluation data was used (1%, 5%, and 10% randomly sampled) to maximize
the F1 score and select the threshold. Since the subsample is random, species
with a low number of presences might not have any presence-locations at all in
the subsample. These results are presented in Tab. A3. Although these scores
are high and close to the upper bound performance (obtained with 100% of the
data), this method is again not viable for species without expert-derived range
maps. As can be seen in this experiment, even a small amount of true data
enables the identification of almost perfect thresholds for binarizing range maps.
However, in practice, a sample of even 1% still requires an infeasible amount of
survey locations to be checked. For context, the LPT-R approach obtains a mean
F1 of 60.8%, without using pseudo or true absence data, which indicates that it
is still quite competitive.



Generating Binary Species Range Maps 23

Table A3: Using test data to determine thresholds. Here we report the mean
F1 score for an LAN-full SDM when different amounts of evaluation data are used to
determine the threshold for each species. A fraction of 1% indicates that only 1% of the
evaluation presence-absence data is utilized to identify the threshold for each species,
and the remaining data is used for evaluation.

Model Fraction Used ↑ Mean F1

LAN-full

1% 63.7
5% 65.7
10% 66.2
100% 66.4

C SINR Training Losses

Here we outline the different loss functions used in SINR to train SDMs which
are evaluated in Tab. 2 in the main paper. SINR introduces the following losses:
“assume negative loss (same species, different location)” LAN-SSDL, “assume neg-
ative loss (same location, different species)” LAN-SLDS, and “full assume negative
loss” LAN-full. The description of the LAN-full loss can be found in Sec. 3.

The LAN-SSDL loss pairs each species observation with a different randomly
generated location as a negative (i.e. pseudo-absence). These randomly gener-
ated pseudo-absences are incorporated into the loss function as follows:

LAN-SSDL(ŷi, zi) = − 1

npos

S∑
j=1

1[zij=1]

[
log(ŷij) + log(1− ŷ′j)

]
, (4)

where a randomly chosen location r ∼ Uniform(X ) is used together with npos =∑S
j=1 1[zij=1] to generate ŷ′ = hϕ(fθ(r)). In this way random absences are gen-

erated across the globe.
The LAN-SLDS loss, on the other hand, associates every species observation

with a pseudo-absence at the same location for a different species. This generates
pseudo-absences that align with the distribution of the presence training data,
so is referred to as target background sampling. This loss is computed as:

LAN-SLDS(ŷi, zi) = − 1

npos

S∑
j=1

1[zij=1] [log(ŷij) + log(1− ŷij′)] , (5)

where j′ ∼ Uniform({j : zij ̸= 1}).

D Additional Visualizations

Finally, we include Fig. A5 and Fig. A6 to visualize how different binariza-
tion methods work. Fig. A5 illustrates how thresholds are set through LPT-R
using the Wood Thrush as an example. Similarly, this bird species is used to
show how pseudo-absences are generated through Target Sampling and Random
Sampling in Fig. A6.
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Fig.A5: Threshold selection for LPT-R. Here we illustrate the main steps of the
LPT-R approach for the Wood Thrush. More specifically, the top left plot shows how
the predictions are collected for all of the H3 cells of a specified resolution where the
species has been observed. The 5th percentile of these predictions is then calculated and
used as a threshold. The map is then binarized so that all cells with a prediction score
higher than the threshold are marked as presences. In the top right plot, the output
of this process is compared to the expert-derived range map. Green cells indicate true
positives, red false positives, and dark gray false negatives.
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Fig.A6: Pseudo-absence generation. Here we visualize how the pseudo-absences
(i.e. ‘Absent’) are generated for the two common sampling methods, target and random
sampling for the Wood Thrush. For Target Sampling, the absences are clustered where
most of the observations have been reported to iNaturalist, i.e. North America, Europe,
and parts of Australasia. In contrast, the Random Sampling absences are uniformly
distributed across the globe.
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